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Abstract — A novel method for transient analysis of lossy transmission
lines with arbitrary nonlinear terminal networks is presented. The unique-
ness of this approach is that we develop time-domain Green’s functions for
the multiport transmission-line systems by terminating the ports in quasi-
matched loads. This ensures Green’s functions of a short duration. Hence,
the amount of frequency-domain data necessary to obtain time-domain
Green’s functions is modest. These Green’s functions are then convolved
with the line port voltages. With this technique one can analyze responses
of multiconductor transmission lines with arbitrary nonlinear loads (even
with memory) as we have at any instant of time Thévenin’s equivalent of
the linear portion of the system. An example is presented to illustrate the
application of this technique to multiconductor nonlinearly loaded trans-
mission lines,

I. INTRODUCTION

ONLINEAR EFFECTS in multiconductor transmis-

sion line systems are important when there are semi-
conductor devices, like diodes and transistors, voltage
limiters, and so on, connected to the transmission lines.
Nonlinearities become important when a device is chang-
ing its state and /or when it is excited by a large-amplitude
signal.

Multiconductor transmission lines have been analyzed
either by a direct time-domain approach or by transform-
ing frequency-domain information [1]-[12]. However, the
analysis of lossy lines is possible only in the frequency
domain. Liu and Tesche [13] have presented two methods
for analyzing linear electromagnetic systems (in particular,
antennas or scatterers) with nonlinear loads. Their first
method is a direct time-domain approach which involves
solving a space-time domain integral equation. The second
method is a technique for obtaining the response of the
antenna by making use of frequency-domain data, such as
the short-circuit current and the driving-point admittance,
both being solutions to the linear problem in the absence
of nonlinearities. Then they solve the nonlinear problem by
time-stepping and convolution utilizing the solution to the
linear portion of the system.

In this paper, the second technique presented in [13] has
been extended and applied to the analysis of nonlinearly
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loaded transmission lines. We first obtain frequency-
domain Y-parameters of the linear portion of the lossy
multiconductor transmission lines by utilizing the modal
analysis in frequency domain. However, our approach dif-
fers from that in [13] as we find the equivalent parameters
of a suitably terminated (quasi-matched) multiconductor
transmission line, instead of the short-circuited line. This
procedure substantially reduces the amount of computa-
tions required to obtain the final solution. Next, we per-
form the inverse Fourier transform of the Y-parameters to
obtain time-domain Green’s functions, i.e., the responses
of the terminated line due to impulse excitations. Finally,
we consider the line with the nonlinear terminal networks
and convolve Green’s functions with the voltages at the
line ports to obtain a time-stepping solution for the port
voltages and currents. The method is suitable for arbitrary
terminal networks, as we need not recompute frequency-
domain data if we change the excitation waveform or any
other characteristic of the terminal networks.

II. THEORY

The analysis of arbitrary nonlinear terminal networks
(with or without memory), in the general case, can be
performed only in time domain. On the other hand, the
analysis of lossy transmission lines (as well as lines with
frequency-dependent parameters) can be performed only in
frequency domain. So, in order to combine the two cases,
i.e., to design a method for analysis of lossy transmission
lines with arbitrary nonlinear terminal networks, one must
be able to combine the solutions in the two domains. Since
the transmission line is a linear network, it can be char-
acterized completely in time domain by its Green’s func-
tions, which are, in turn, obtained from the frequency-
domain analysis. These functions can be implemented in a
time-domain solution of the terminal networks in a manner
shown below.

Consider a linear, passive n-port network. Suppose that
an ideal voltage generator, of emf v (¢), is connected at
the port j, while the other ports are short-circuited. One
can solve for the currents at the network ports. All these
currents can be represented in the form

Ik(w)=ij(w)V;O(w), k=1,---,n (1)

where V,(w) is the Fourier transform of v o(¢) and Y, (w)
are the network Y-parameters, while w is the angular
frequency. Let us suppose, for a moment, that v o(7) is a
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unit delta function. In that case, V;(«) =1, independently
of frequency, and the currents in the time domain are
obtained as

ik(t)ﬁigkj(t)=FM1{Yk1(w)} (2)

where F~! denotes the inverse Fourier transform. These
currents are referred to as the network Green’s functions.
(There are two things to be noted. First, the reference
direction for the generator emf and the current at that port
coincide, by convention. Second, if the network is recipro-
cal, as in our case, then i () =i ;(1).)

Let us go back to the case when v,,(¢) is an arbitrary
function. Now we have

(1) = FH{ Y (@)Vjo(w@)} =ig (1) *uo(t)  (3)

where “ +” denotes the convolution. By the superposition
principle, which is valid for linear networks, if we now
consider the same network driven by ideal voltage genera-
tors at all the ports, we can write
n
(@)= X [ige (1= m)0(r)dn @
j=1

where the convolution is represented by its integral form
assuming that all the excitations begin after ¢ = 0. It should
be noted that, by the compensation theorem, the ideal
voltage generators driving the network can be considered
as a substitution of the outside circuitry connected to the
network. Now, the emf’s of these generators must equal the
voltages at the network ports.

Following the above approach, we would have to con-
nect an ideal delta-function generator between one of the
transmission line conductors (at one line end) and ground,
short-circuit all other line ports, perform the modal analy-
sis in the frequency domain to find the conductor currents,
and compute the inverse Fourier transform to obtain
Green’s functions. This should be repeated for all line
conductors.

There are, however, several problems that should be
considered. First, the analysis of the transmission line is
usually done only numerically, at a finite number of dis-
crete frequencies. In turn, in time domain, Green’s func-
tions also must be discretized and of finite duration. Sec-
ond, these Green’s functions must be convolved with line
port voltages, which also has to be done numerically. The
convolution turns out to be the most time-consuming pro-
cess in the present analysis. Therefore, the number of
samples of Green’s functions should be kept as low as
possible. This can be a particular problem if the analysis of
the response of the line with terminal networks is to span a
time interval greater than a few line transit times. Namely,
if the line ports are short-circuited (as they are for the
computation of Green’s functions), the line response ex-
ceeds many transit times in duration, even for a moderately
lossy line. For a lossless line with short-circuited ports, the
response is of infinite duration! Therefore, the line Green’s
functions would have to be kept in very long registers,
spanning the same time interval as the time interval in
which we would like to analyze the response of the trans-

661
—_—
g ¢ B Lot e T s Lo @
E -1 R b e -
N v 16 A vf 1
T I » IIL L
0
rR[__ o . 8 o . -
A ¥ A
T 1 B
[} 8 N
R 1- |-z - | g)- - 8 - iz |- - -Jega]- -] §
1

N ° T
L M W
- --- - - - - --- --lo
" 1 L i p
o vig I vNL
r — > % ¥ tf L.....1
X Yyng| hd ysL

AUGMENTED AUGNENTED

| ¢~ GENERATOR == | mm——mmme AUGMENTED TRANSMISSION LINE ~——3| €=  LOAD —3|

NETHORK
| BANE AS

ISSION LINE ONLY —————ressamad) |

Fig. 1. Schematic representation of lossy multiconductor transmission
line with arbitrary terminal networks and auxiliary networks [ Z,,] and

{=Zum)

mission line terminated by arbitrary nonlinear networks.
This is, of course, not only a computer-storage problem,
but also demands very long execution times.

The lengths of the registers mentioned above could be
kept relatively short if the duration of Green’s functions
could be reduced to only a few line transit times. However,
such a situation is possible only if the line is reasonably
well matched. As an example, let us consider a lossless line
terminated in perfectly matched networks and excited by a
delta-function generator at one line port. The duration of
the line response is only one sample for all the ports at the
same line end where the generator is connected. The re-
sponse at the ports at the other line end terminates after
one line transit time. For lossy lines, with moderately low
losses (as normally used in practice), the situation is simi-
lar.

Following the above example, we would like to have a
well-matched transmission line when computing Green’s
functions. However, later on we have to be able to use
these Green’s functions to obtain the response of the line
terminated in given terminal networks. To achieve both
goals, we can artificially insert between the transmission
line and the terminal networks two pairs of passive net-
works, denoted as [Z,,] and [— Z,,] in Fig. 1. The trans-
mission line with the two [Z,,] networks we shall refer to
as the augmented transmission line, while the terminal
networks with the [ — Z,,] networks we shall refer to as the
augmented terminal networks. Our objective is to syn-
thesize the networks [Z,,] and [— Z,,] so as to minimize
the duration of the augmented transmission line Green’s
functions, yet to make the series combination of the [Z,,]
and [— Z,,] networks behave as a set of short circuits
between the transmission line and the terminal networks.

Let the inserted networks have 2N ports, where N is the
number of line signal conductors. Let us also denote one
set of N ports as the side “a” of the network, and the
other N ports as the side “b” of the network, as shown in
Fig. 1. Let us represent the Z-matrix of the network [Z,,]
as

_1z) 1z,]
[ZM]'_ [Zm] [Zb]] (5)

where the blocks [Z,] and [Z,] shall be referred to as the
self blocks, and the block [Z,] as the mutual block of
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Z-parameters. Let the network [~ Z,,] consist of the same
elements as the network [Z,,], but of opposite signs. Then

[_ZM]=‘"[ZM]- (6)

In addition, we shall refer to the ports at the “b” sides of
the networks [ Z,,] and [~ Z,,] as the virtual ports, and we
shall refer to the voltages and currents at these ports as the
virtual port voltages, namely currents.

We have now to find [Z,], [Z,], and [Z,,] so that the
augmented transmission line is well matched (i.e., quasi-
matched) when the ports at the side “b” of the network
[ Z,,] are short circuited to ground; e.g., if the transmission
line is assumed to have a real and frequency-independent
characteristic impedance matrix [Z_], we have to fulfil the
condition

[z.]=12,1-12,1(2,] '[Z,]. (7)

Of course, there are many equivalent realizations of resis-
tive networks that satisfy (7).

Once we have designed the network [Z,,], we automati-
cally know the network [ — Z,,]. It can be easily shown that
the cascade of these two networks behaves as a set of short
circuits between the corresponding ports at the sides “a”
of the networks [Z,,] and [~ Z,,] (see Appendix).

Considering now the augmented transmission line as a
network with n=2N ports, we can determine its Green’s
functions. These functions known, we can relate the virtual
port currents i,,(¢) to the virtual port voltages f, (¢) by
using (4), where v,(#) should be substituted by v, (t) In
order to distingulsh between the line ports at the generator
and at the load end, we can introduce indices “G” for the
quantities corresponding to the generator end, and “L” for
the load end, and rewrite (4) as

N

. I.s

(1) = X j(;lgk](t—T)vij(T)dT
=1

N

Lo
+ X [ig,(t=r)ou(n)dr, &
170

=

1,---,N (8)

N

. tm

lvkL(t) = Z /élgkj(t_T)vij(T)dT
J=1

N

Ls
+ X flgkj(t_T)vujL(T)dTa k=1,---,
. 1 0

j=

N. (9)

In these equations, iy, . is Green’s function representing
the current at the virtual port k when the delta-function
generator drives the virtual port j at the same line end,
while i . corresponds to the case when the current is

computed at one line end, while the excitation is at the
other end. Obviously, due to the symmetry of the transmis-
sion line, it is irrelevant which end of the line is taken as
the first and which as the second one.

In order to prepare (8) and (9) for computer use, we
have to replace the integrations by summations. Thus we
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obtain

ec(q) = % i ing(Q'P)Uij(P)At

J=1p=0

N 9
+ Z Z i;nkj(q_p)vij(p)Ata k=1,---,N (10)
J=1p=0

(@)= 5 3 in (g p)nyo(p)At

J=1p=0

N 4
+) X i;kj(q—P)quL(P)At’

1=14=0

k=1, (11)

where the argument (g) denotes the time instant gAz at
which we take the voltages and currents. We can modify
the sums on the right-hand sides of (10) and (11) by
extracting the terms for p = ¢. Noting that i}, ;(0) # 0, and
(0) = 0 (due to the line delay), we have

gkj
N
inc(q) = Z i;kj(O)UUJG(q)At

=1
N g-
Z Z (= p)o,c(p)At
=lp=
N q-

+ Z k/(q—p)UUjL(p)Ata
Jj=1p=0

k=1,---,N (12)
N
i (@)= 2 i;kj(o)vujL(q)At

J=1
N q-1
Y X in(qg-p)u,e(p)at
J7=1p=0
N g-1

+ 2 2 i, (g p)ui(p)A,
J=1p=0

k=1,---,N. (13)

Note that the first sum in either of (12) and (13) contains
virtual voltages only for ¢=gA¢, ie., at the same time
instant for which the current on the left-hand side is
computed, while the second (double) sum contains only the
previous values of the voltages, i.e., the history of the
network. Noting that i}, (0) are constants for a given
transmission line, the first sum can be represented for
k=1,---, N in the form [G,,][v,], where [v,] is a column
matrix contammg the virtual voltages, and [G, d] isaNXN
square matrix, the elements of which are iy, (0). The
matrix [G,,] can be considered as a conductance matrix
giving the instantaneous (dynamic) input conductance to
the transmission line as seen from the virtual ports. The
double sum represents a current. It can be considered as a
current of an independent current generator, the current of
which does not depend on the instantaneous values of the
transmission line currents and voltages, but rather only on
their previous values. Again, if we consider k=1,---, N,
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these independent currents can be represented by a column
matrix [i ], where the subscript “c” points out that these
currents are obtained by convolving Green’s functions with
the virtual port voltages. Thus, (12) and (13) can be written
in a shorter form

[io(@)] = [Goallvia(D] +[ics(a—1)]  (14)
[io (D] = [Gallo, (D] + [i(g-1)]  (15)

where [i,;] and [i,;] are column matrices containing the
virtual port currents. We can now solve (14) and (15) for
the virtual voltages at t = gA¢ to obtain

[UUG(‘I)]=[Gvd]_l[ivc(q)]“[Gvd]_l[icc(q_l)] (16)
[2,.(@)] = [G,a] 1o = [Goa] Mic(g—1)]. (17)

There are, however, certain problems that have to be
considered. First, any real transmission line has
frequency-dependent parameters, i.e., its characteristic im-
pedance cannot be represented by a purely resistive net-
work. We have to notice that the augmented terminal
networks comprise the networks [ — Z,,]. Since the analysis
of the terminal networks is to be performed in time do-
main, it is not possible to model the network [Z,,] by
frequency-dependent elements. This means that we cannot
make a perfect match for a real (lossy) transmission line.
However, this should not be a serious problem, because the
characteristic impedance matrix of a line with relatively
low losses does not significantly depend on frequency.

Furthermore, this matrix is almost real, and very close to

the characteristic impedance matrix of a lossless line that
has the same inductance and capacitance matrices as the
lossy line under consideration. Second, the network [Z,,]
should be as simple as possible. and it is advisable that its
elements are pure resistances, so that the analysis of the
terminal networks does not get too involved.

The simplest choice of the network [Z,,] is to take
simple resistors and connect them between the correspond-
ing ports at the sides “a” and “b”. In order to obtain a
reasonably good match, the resistances can be taken equal
to the corresponding diagonal elements of the characteris-
tic impedance matrix of the corresponding lossless line
[Z.], ie., Z,,. Thereby, in practical cases of lossy lines,
the response of the augmented transmission line (when
computing Green’s functions) is confined to about 3—6 line
transit times, and Green’s function registers have to cover
only this time span. With these simple resistance matrices,
our system looks as shown in Fig. 2. Of course, if the
coupling between the adjacent conductors is extremely
large, as, for example, in certain filters, a more sophisti-
cated network [ Z,,] might be needed.

If we now connect the terminal networks augmented by
the negative resistances to the augmented transmission line
(see Fig. 2), the conductor currents and the voltages be-
tween the junctions of Z , and — Z_,, and the ground are
related by (16) and (17) where the subscript “v” for the
currents can be omitted. Note that the series combination
of Z,, and —Z_, essentially represents a mere short

<
circuit. The terminal voltages at the real transmission line
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Fig. 2. Schematic representation of the system of Fig. 1, but with the
auxiliary networks in the form of a set of resistors.

ports can now be obtained as
[v6(9)] = [v,6(g)] +diag(— Z)[is(q)]
=[R)[ig(D)]=[G,a]l lic(g-1)] (18)
[0.(9)] = [v,.(q)] +diag(~ Z,)[i.(q)]
=R D]~ [Gu]l i@ =-D)] (19)

where diag(— Z,) is a diagonal matrix the elements of
which are — Z,

[R,]=[G,,] " +diag(~ Z,) (20)

is the dynamic input-resistance matrix of the line, as seen
from the terminal networks, while the term —[G,,]7[i,]
can be considered as the line open-circuit voltage vector.
Hence, we have managed to obtain line equivalent instan-
taneous Z-parameters (i.e., parameters of the Thévenin
equivalent circuit), as seen by the (nonaugmented) terminal
networks. It is worth noting that the dynamic input resis-
tance is time constant. In fact, for a lossy line with
frequency-independent matrices [L] and {C], [R,] equals
the characteristic impedance matrix of the corresponding
lossless line; e.g., for the simplest case of N=1, R,
=4/L/C. This can easily be understood if we take a look
at the characteristic impedance matrix in the cormplex
domain. For N=1we have Z,=\(R + jwL)/(G + juC),
where R, L, G, and C are line resistance, inductance,
conductance, and capacitance per unit length, respectively.
At very high frequencies, the imaginary parts of the numer-
ator and denominator dominate over the real parts so that
we have Z =,/L/C. On the other hand, the dynamic
(instantaneous) resistance describes the line behavior for
an abruptly changing signal (theoretically, changing in-
stantaneously), for which case the highest frequency com-
ponents are important for obtaining the time waveform.
However, we have discretized the signals in time and
applied numerical techniques, thus limiting the spectrum.
Therefore, our numerically obtained [R,] should not ex-
actly coincide with the characteristic impedance of a loss-
less line. Nevertheless, numerical results have shown that
these two matrices have very close elements. The higher the
upper frequency limit used in the frequency-domain analy-
sis, the closer are these elements.

Finally, the insertion of negative resistances into the
terminal networks can raise a question about the stability
of the solution due to numerical errors. Fortunately, there
are always some losses present in the transmission line and,
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usually, in the terminal networks. These losses were found
to be sufficient to make the numerical errors invisible in
any practical case.

111.

The present method was first checked by comparing the
results with other techniques, such as modal analysis in the
time domain, modal analysis in the frequency domain, and
time-stepping solution of a ladder-network approximation
of the transmission line. The comparisons were made for
the cases that can be handled by these techniques, e.g., a
lossless line with a nonlinear resistive termination, or a
lossy line with a linear resistive termination. In all the
cases, a good agreement was observed, which was typically
within a few percent. Of course, one has to be careful in
choosing the time step in the convolution so as to properly
sample the waveforms and avoid the aliasing error associ-
ated with the fast Fourier transform. However, a compara-
tive analysis would take too much space, and therefore, it is
not going to be presented here.

As an example of results obtained by the present tech-
nique, we are going to consider a three-conductor lossy
transmission line (i.e., N =2). The line length is assumed
to be 0.5 m, and the inductance, capacitance, resistance,
and conductance matrices at 1 MHz are

NUMERICAL EXAMPLE

(L1=%7, oo |oH/m
[C]=i1—4‘61.4 1_4461'4]1’1:/“1
[R ]=j5§g.9 53.3'9] mil/m
-, 1t ]ssm

The resistances were assumed to vary proportionally to
the square root of frequency, and the conductances propor-
tionally to the first power of frequency. At one line end,
one conductor is driven by a 50-£ voltage generator (see
Fig. 3), of EMF e(t) shown in Fig. 4, while the other
conductor is terminated in a 75-Q load. At the other end,
the line is terminated in two nonlinear resistive circuits,
each of them being a series combination of a 10-Q resistor
and a nonlinear resistor. The characteristics of the nonlin-
ear resistors were assumed to be given by the equation

i, =10(exp(:/—';) 31) nA (21)

where i, is the current through the nonlinear resistor, v, is
the voltage at the nonlinear resistor, and V, = 25 mV. Now
at each time step, we have to solve (18) and (19) simulta-
neously with the equations for the terminal networks

[sol@)] = |22 ][08 0 Nt (22

0
[oe(@] =[] - 9% O |li)]  @3)
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where the vector [v,(g)] comprises voltages v,; and v,, at
the nonlinear resistors. These voltages are related to the
conductor currents through (21), where i, should be re-
placed by —i,,(g) and —i,,(q), respectively. The equa-
tions for the load end essentially form a system of simulta-
neous nonlinear equations. These equations were solved
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here by using the Nelder-Mead simplex algorithm for
nonlinear optimization [14].

The voltages at the generator and load ends are given in
Fig. 5. In this computation, the time step was taken to be
20 ps, i.e., the highest frequency involved in the computa-
tion of Green’s functions was 25 GHz. The lengths of the
registers containing Green’s functions were 512 samples,
i.e., 10.24 ns. The CPU time on a VAX 750 computer was
about 4.5 min. As a byproduct, the characteristic imped-
ance matrix of the corresponding lossless line was found to
be

(4638 266
[Zc]‘[ 2.66 46.38]9'

In Fig. 5 one can easily trace the voltage at the driven
conductor and the voltage at the parasitic conductor (due
to the cross-talk) as the waves reach the load end, get
reflected, come back to the generator end, and reach the
load end again. The line transit time is about 3.4 ns.

IV. CONCLUSION

A novel technique was presented for the transient analy-
sis of lossy multiconductor transmission lines with arbi-
trary nonlinear loads. In this approach we compute time-
domain Green’s functions of the transmission line
terminated in quasi-matched loads. These loads change the
properties of the transmission line as seen by the line
terminal networks, but these properties are easily restored
by inserting complementary networks, with negative ele-
ments, into the line terminal networks. The complete re-
sponse of the system is then obtained by using convolution,
yielding the equivalent Thévenin network of the transmis-
sion line at any time instant. This equivalent network can
easily be incorporated into the time-domain solution of the
terminal networks. The solution of nonlinear networks
(with or without memory) was considered to be a standard
circuit-theory technique, as it was not discussed here.

For the present technique, we need fewer time-domain
data points than in other techniques for the same resolu-
tion. This, in turn, implies that one needs fewer frequency-
domain data points when computing Green’s functions,
and fewer terms in evaluation of the convolution integrals.
This significantly improves the CPU time, as the computa-
tions in frequency domain and the evaluation of the con-
volution are the most time-consuming parts of the analysis.
An example was included to illustrate the application of
the proposed technique.

APPENDIX -

Let us introduce the vector [I’] of currents entering the
side “a” of the network {Z,,], the vector [I’’] of currents
entering the side “a” of the network [— Z,,], and the
vector [I,] of virtual port currents, entering the side “b” of
the network [Z,,] and at the same time leaving the side
“p” of the network [— Z,,]. Let us also introduce the
vector [V '] of voltages at the side “a” of the network [ Z,,],
the vector [V”] of voltages at the side “a” of the network
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[— Z,,], and the vector [V,] of virtual port voltages at the
sides “b” of the networks [Z,,] and [— Z,,].

The Z-parameter equations for the two networks now
read

[v}=1ZIlr]+[2,]1,] (A1)
. 1=1z,1[1']+[Z,](1,] (A2)
v]=[-Zz]1"1-1-2,1l1,) (A3)
V.1=1-2z,1l1"1-1-2,][1]. (A4)

Taking into account (6), we can subtract (A4) from (A2),
thus obtaining

[z, J([7’]+[17]) = 0] (A5)
where [0] is a null-vector. From (A5) we have
[1']=-[1"]. (A6)

If we substitute (A6) into (A3) and compare with (A1), we
finally obtain

[V i=1v"]. (A7)

Equations (A6) and (A7) essentially state that the corre-
sponding ports at the sides “a” of the networks [Z,,] and
[~ Z,,] are merely short circuited, because the currents and
the voltages at the ports are identical.
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