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Abstract —A novel method for transient analysis of Iossy transmission

lines with arbitrary nonlinear terminal networks is presented. The unique-

ness of this approach is that we develop time-domain Green’s functions for

the multiport transmission-line systems by terminating the ports in quasi-

matched loads. This ensures Green’s functions of a short duration. Hence,

the arnonnt of frequency-domain data necessary to obtain time-domain

Greeu’s functions is modest. These Green’s fnnctions are then convolved

with the line port voltages. With tfds technique one can anafyze responses

of multiconductor transmission fines with arbitrary nonliuear loads (even

with memory) as we have at any instant of time Th&enin’s equivalent of

the linear portion of the system. An example is presented to illustrate the

application of this tecfmiqne to multiconductor nonlinearly loaded trans-

mission lines,

I. INTRODUCTION

N ONLINEAR EFFECTS in multiconductor transmis-

sion line systems are important when there are semi-

conductor devices, like diodes and transistors, voltage

limiters, and so on, connected to the transmission lines.

Nonlinearities become important when a device is chang-

ing its state and/or when it is excited by a large-amplitude

signal.

Multiconductor transmission lines have been analyzed

either by a direct time-domain approach or by transform-

ing frequency-domain information [1]–[12]. However, the

analysis of lossy lines is possible only in the frequency

domain. Liu and Tesche [13] have presented two methods

for analyzing linear electromagnetic systems (in particular,

antennas or scatterers) with nonlinear loads. Their first

method is a direct time-domain approach which involves

solving a space-time domain integral equation. The second

method is a technique for obtaining the response of the

antenna by making use of frequency-domain data, such as

the short-circuit current and the driving-point admittance,

both being solutions to the linear problem in the absence

of nonlinearities. Then they solve the nonlinear problem by

time-stepping and convolution utilizing the solution to the

linear portion of the system.

In this paper, the second technique presented in [13] has

been extended and applied to the analysis of nonlinearly
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loaded transmission lines. We first obtain frequency-

domain Y-parameters of the linear portion of the lossy

multiconductor transmission lines by utilizing the modal

analysis in frequency domain. However, our approach dif-

fers from that in [13] as we find the equivalent parameters

of a suitably terminated (quasi-matched) multiconductor

transmission line, instead of the short-circuited line. This

procedure substantially reduces the amount of computa-

tions required to obtain the final solution. Next, we per-

form the inverse Fourier transform of the Y-parameters to

obtain time-domain Green’s functions, i.e., the responses

of the terminated line due to impulse excitations. Finally,

we consider the line with the nonlinear terminal networks

and convolve Green’s functions with the voltages at the

line ports to obtain a time-stepping solution for the port

voltages and currents. The method is suitable for arbitrary

terminal networks, as we need not recompute frequency-

domain data if we change the excitation waveform or any

other characteristic of the terminal networks.

II. THEORY

The analysis of arbitrary nonlinear terminal networks

(with or without memory), in the general case, can be

performed only in time domain. On the other hand, the

analysis of lossy transmission lines (as well as lines with

frequency-dependent parameters) can be performed only in

frequency domain. So, in order to combine the two cases,

i.e., to design a method for analysis of lossy transmission

lines with arbitrary nonlinear terminal networks, one must

be able to combine the solutions in the two domains. Since

the transmission line is a linear network, it can be char-

acterized completely in time domain by its Green’s func-

tions, which are, in turn, obtained from the frequency-

domain analysis. These functions can be implemented in a

time-domain solution of the terminal networks in a manner
shown below.

Consider a linear, passive n-port network. Suppose that

an ideal voltage generator, of emf U,. ( t), is connected at

the port j, while the other ports are short-circuited. One

can solve for the currents at the network ports. All these

currents can be represented in the form

Jk(@)=l’,, (~)qo(~)> k=l,. ... n (1)

where ~o(a ) is the Fourier transform of u,,(t) and Y~j(ti)

are the network Y-parameters, while ~ is the angular

frequency. Let us suppose, for a moment, that u,,(t) is a
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unit delta function. In that case, TO(o) =1, independently

of frequency, and the currents m the time domain are

obtained as

i~(t)=igkj(t)=F-l{Yk,(ti)} (2)

where F– 1 denotes the inverse Fourier transform. These

currents are referred to as the network Green’s functions.

(There are two things to be noted. First, the reference

direction for the generator emf and the current at that port

coincide, by convention. Second, if the network is recipro-

cal, as in our case, then i~kj(t) = i~jk(t).)

Let us go back to the case when U,O(t) is an arbitrary

function. Now we have

ik(t) =F-l{Yk, (a)~o(Q)} =igkJ(t)*ujo(t) (3)

where “ *” denotes the convolution. By the superposition

principle, which is valid for linear networks, if we now

consider the same network driven by ideal voltage genera-

tors at all the ports, we can write

(4)

where the convolution is represented by its integral form

assuming that all the excitations begin after t = O. It should

be noted that, by the compensation theorem, the ideal

voltage generators driving the network can be considered

as a substitution of the outside circuitry connected to the

network. Now, the emf’s of these generators must equal the

voltages at the network ports.

Following the above approach, we would have to con-

nect an ideal delta-function generator between one of the

transmission line conductors (at one line end) and ground,

short-circuit all other line ports, perform the modal analy-

sis in the frequency domain to find the conductor currents,

and compute the inverse Fourier transform to obtain

Green’s functions. This should be repeated for all line

conductors.

There are, however, several problems that should be

considered. First, the analysis of the transmission line is

usually done only numerically, at a finite number of dis-

crete frequencies. In turn, in time domain, Green’s func-

tions also must be discretized and of finite duration. Sec-

ond, these Green’s functions must be convolved with line

port voltages, which also has to be done numerically. The

convolution turns out to be the most time-consuming pro-

cess in the present analysis. Therefore, the number of

samples of Greern’s functions should be kept as low as

possible. This can be a piwticular problem if the analysis of

the response of the line with terminal networks is to span a

time interval greater than a few line transit times. Namely,

if the line ports are short-circuited (as they are for the
computation of Green’s functions), the line response ex-

ceeds many transit times in duration, even for a moderately

lossy line. For a lossless line with short-circuited ports, the

response is of infinite duration! Therefore, the line Green’s

functions would have to be kept in very long registers,

spanning the same time interval as the time interval in

which we would like to analyze the response of the trans-
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Fig. 1. Schematic representation of lossy multiconductor transmission

line with arbitrary terminal networks and auxiliary networks [ Z~ ] and
[- ZM].

mission line terminated by arbitrary nonlinear networks.

This is, of course, not only a computer-storage problem,

but also demands very long execution times.

The lengths of the registers mentioned above could be

kept relatively short if the duration of Green’s functions

could be reduced to only a few line transit times. However,

such a situation is possible only if the line is reasonably

well matched. As an example, let us consider a lossless line

terminated in perfectly matched networks and excited by a

delta-function generator at one line port. The duration of

the line response is only one sample for all the ports at the

same line end where the generator is connected. The re-

sponse at the ports at the other line end terminates after

one line transit time. For lossy lines, with moderately low

losses (as normally used in practice), the situation is simi-

lar.

Following the above example, we would like to have a

well-matched transmission line when computing Green’s

functions. However, later on we have to be able to use

these Green’s functions to obtain the response of the line

terminated in given terminal networks. To achieve both

goals, we can artificially insert between the transmission

line and the terminal networks two pairs of passive net-

works, denoted as [ Z~] and [ – Z~] in Fig. 1. The trans-

mission line with the two [ Z~] networks we shall refer to

as the augmented transmission line, while the terminal

networks with the [ – Z~] networks we shall refer to as the

augmented terminal networks. Our objective is to syn-

thesize the networks [ Z~] and [ – Z~] so as to minimize

the duration of the augmented transmission line Green’s

functions, yet to make the series combination of the [Z~]

and [ – Z~] networks behave as a set of short circuits

between the transmission line and the terminal networks.

Let the inserted networks have 2N ports, where N is the

number of line signal conductors. Let us also denote one

set of N ports as the side “a” of the network, and the

other N ports as the side “b” of the network, as shown in
Fig. 1. Let us represent the Z-matrix of the network [Z~]

as

‘ZM]=[HEl (5)

where the blocks [Z=] and [ Z~] shall be referred to as the

self blocks, and the block [ Z~ ] as the mutual block of
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Z-parameters. Let the network [ – Z~] consist of the same

elements as the network [ Z~], but of opposite signs. Then

[-zM]=-[zM]. (6)

In addition, we shall refer to the ports at the “b” sides of

the networks [ Z~] and [ – Z~] as the virtual ports, and we

shall refer to the voltages and currents at these ports as the

virtual port voltages, namely currents.

We have now to find [2.], [Z~], and [Z~] so that the

augmented transmission line is well matched (i.e., quasi-

matched) when the ports at the side “b” of the network

[Z~] are short circuited to ground; e.g., if the transmission

line is assumed to have a real and frequency-independent

characteristic impedance matrix [Z=], we have to fulfil the

condition

[Zc] = [Za]-[zm][z,]-’[ zm]. (7)

Of course, there are many equivalent realizations of resis-

tive networks that satisfy (7).

Once we have designed the network [Z~], we automati-

cally know the network [ – Z~]. It can be easily shown that

the cascade of these two networks behaves as a set of short

circuits between the corresponding ports at the sides “a”

of the networks [ Z~] and [ – Z~] (see Appendix).

Considering now the augmented transmission line as a

network with n = 2N ports, we can determine its Green’s

functions. These functions known, we can relate the virtual

port currents iu~(t) to the virtual port voltages ~U,(t) by

using (4), where UjO(t) should be substituted by Voj(t). In

order to distinguish between the line ports at the generator

and at the load end, we can introduce indices “G” for the

quantities corresponding to the generator end, and “L” for

the load end, and rewrite (4) as

N

+ x jt~;k,(~–du”,w~c k=l,... , N (8)
,=~ o

In these equations, i~kj is Green’s function representing

the current at the virtual port k when the delta-function

generator drives the virtual port j at the same line end,

while i~k j corresponds to the case when the current is

computed at one line end, while the excitation is at the

other end. Obviously, due to the symmetry of the transmis-

sion line, it is irrelevant which end of the line is taken as

the first and which as the second one.
In order to prepare (8) and (9) for computer use, we

have to replace the integrations by summations. Thus we

obtain

+ ~ ~ i~~,(q–p)u,~(p)A~, k=l, ””” , N (10)
~=lp=()

‘u/cL(q)= ~ ~ ‘~kj(q– P)u.jG(P)At
~=lp=o

]=lq=()

where the argument (q) denotes the time instant q At at

which we take the voltages and currents. We can modify

the sums on the right-hand sides of (10) and (11) by

extracting the terms for p = q. Noting that i;kj(0) # O, and

i~k, (0) = O (due to the line delay), we have

‘.,kG(q) = f ‘~kj(0)uoJG(q)At
jsl

N q–l

+ Z Z ifkJ(q–p)uo,L(P)A~7
j=lp =()

k=l, ”””, N (12)

N

‘.kL(q) = i ‘~kj(0)V.jL(q)At
J=I

+ Z X ‘~kj(q– P)vOjc(P)At
J=lp=o

,=lp=l)

k=l,.. ” , N. (13)

Note that the first sum in either of (12) and (13) contains

virtual voltages only for t= q At, i.e., at the same time

instant for which the current on the left-hand side is

computed, while the second (double) sum contains only the

previous values of the voltages, i.e., the history of the
network. Noting that i~kj(0) are constants for a given

transmission line, the first sum can be represented for

k=l,... , N in the form [GUd][uo], where [u.] is a column

matrix containing the virtual voltages, and [God] is a N X N

square matrix, the elements of which are i~k,(0). The

matrix [Gud] can be considered as a conductance matrix

giving the instantaneous (dynamic) input conductance to

the transmission line as seen from the virtual ports. The

double sum represents a current. It can be considered as a

current of an independent current generator, the current of

which does not depend on the instantaneous values of the

transmission line currents and voltages, but rather only on

their previous values. Again, if we consider k =1,. . . . N,
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these independent currents can be represented by a column

matrix [i.], where the subscript “c” points out that these

currents are obtained by convolving Green’s functions with

the virtual port voltages. Thus, (12) and (13) can be written

in a shorter form

[iw(q)] = [Gu~][U.~(q)] + [i.~(q -1)] (14)

[i.~(q)l = [%i][ou~(q)] + [i.~(q -1)] (15)

where [iuG] and [ i.L] are column matrices containing the
virtual port currents. We can now solve (14) and (15) for

the virtual voltages at t = q At to obtain

[LL~(q)]= [G.~l-’[~.G(q)]-[%~l-’[~.dq -l)] (16)

[U.~(q)] = [f-%~]-l[i.~(q)] -[%il-l[i.~(q -l)]. (17)

There are, however, certain problems that have to be

considered. First, any real transmission line has

frequency-dependent parameters, i.e., its characteristic im-

pedance cannot be represented by a purely resistive net-

work. We have to notice that the augmented terminal

networks comprise the networks [ – Z~]. Since the analysis

of the terminal networks is to be performed in time do-

main, it is not possible to model the network [Z~] by

frequency-dependent elements. This means that we cannot

make a perfect match for a real (lossy) transmission line.

However, this should not be a serious problem, because the

characteristic impedance matrix of a line with relatively

low losses does not significantly depend on frequency.

Furthermore, this matrix is almost real, and very close to

the characteristic impedance matrix of a lossless line that

has the same inductance and capacitance matrices as the

lossy line under consideration. Second, the network [ Z~]

should be as simple as possible. and it is advisable that its

elements are pure resistances, so that the analysis of the

terminal networks does not get too involved.

The simplest choice of the network [ Z~] is to take

simple resistors and connect them between the correspond-

ing ports at the sides “a” and “b”. In order to obtain a

reasonably good match, the resistances can be taken equal

to the corresponding diagonal elements of the characteris-

tic impedance matrix of the corresponding lossless line

[Z,], i.e., Z,kk. Thereby, in practical cases of lossy lines,

the response of the augmented transmission line (when

computing Green’s functions) is confined to about 3–6 line

transit times, and Green’s function registers have to cover

only this time span. With these simple resistance matrices,

our system looks as shown in Fig. 2. Of course, if the

coupling between the adjacent conductors is extremely

large, as, for example, in certain filters, a more sophisti-

cated network [ Z~] might be needed.

If we now connect the terminal networks augmented by

the negative resistances to the augmented transmission line
(see Fig. 2), the conductor currents and the voltages be-

tween the junctions of Zc~~ and – Z=~~ and the ground are

related by (16) and (17) where the subscript “u” for the

currents can be omitted. Note that the series combination

of ZC~~ and — ‘&k essentially represents a mere short
circuit. The terminal voltages at the real transmission line

Fig. 2. Schematic representation of the system of Fig. 1, but with the
auxiliary networks in the form of a set of resistors.

ports can now be obtained as

[%(~)]= [%(~)]+W3(-ZC)[%(4)1
= [Rd][i~(q)] -[ GU,]-’[~C~(q -l)] (18)

[U~(q)] = [U.~(q)] +diag(-Z.)[i~(q)]

, = [R~][i~(q)] -[ GUd]-’[ic~(q -l)] (19)

where diag ( – ZC) is a diagonal matrix the elements of

which are – ZCkk

[R.] = [GU,]-’+diag(-ZC) (20)

is the dynamic input-resistance matrix of the line, as seen

from the terminal networks, while the term – [GUd]-l[iC]

can be considered as the line open-circuit voltage vector.

Hence, we have managed to obtain line equivalent instan-

taneous Z-parameters (i.e., parameters of the Th6venin

equivalent circuit), as seen by the (nonaugmented) terminal

networks. It is worth noting that the dynamic input resis-

tance is time constant. In fact, for a lossy line with

frequency-independent matrices [L] and [C], [Rd] equals

the characteristic impedance matrix of the corresponding

lossless line; e.g., for the simplest case of N =1., Rd

=~. This can easily be understood if we take a look

at the characteristic impedance matrix in the complex

domain. For N= 1 we have ZC = /(R + jcoL)/(G + j~X),
.—

where R, L, G, and C are line resistance, inductance,

conductance, and capacitance per unit length, respectively.

At very high frequencies, the imaginary parts of the numer-

ator and denominator dominate over the real parts SIOthat

we have 2== ~. On the other hand, the dyrlamic
(instantaneous) resistance describes the line behavior for

an abruptly changing signal (theoretically, changing in-

stantaneously), for which case the highest frequency com-

ponents are important for obtaining the time waveform.

However, we have discretized the signals in time and

applied numerical techniques, thus limiting the spectrum.

Therefore, our numerically obtained [R ~] should not ex-

actly coincide with the characteristic impedance of a loss-

less line. Nevertheless, numerical results have shown that

these two matrices have very close elements. The higher the
upper frequency limit used in the frequency-domain analy-

sis, the closer are these elements.

Finally, the insertion of negative resistances into the

terminal networks can raise a question about the stability

of the solution due to numerical errors. Fortunately, there

are always some losses present in the transmission line and,
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usually, in the terminal networks. These losses were found

to be sufficient to make the numerical errors invisible in

any practical case.

111. NUMERICAL EXAMPLE

The present method was first checked by comparing the

results with other techniques, such as modal analysis in the

time domain, modal analysis in the frequency domain, and

time-stepping solution of a ladder-network approximation

of the transmission line. The comparisons were made for

the cases that can be handled by these techniques, e.g., a

lossless line with a nonlinear resistive termination, or a

lossy line with a linear resistive termination. In all the

cases, a good agreement was observed, which was typically

within a few percent. Of course, one has to be careful in

choosing the time step in the convolution so as to properly

sample the waveforms and avoid the aliasing error associ-

ated with the fast Fourier transform. However, a compara-

tive analysis would take too much space, and therefore, it is

not going to be presented here.

As an example of results obtained by the present tech-

nique, we are going to consider a three-conductor lossy

transmission line (i.e., N = 2). The line length is assumed

to be 0.5 m, and the inductance, capacitance, resistance,

and conductance matrices at 1 MHz are

1[~1= [38.7 3~j”7 nH/m

[cl = [!:.4 ~q~ 1
– 6“4 pF/m

1
[R] = [5~09 &“9 mS1/m

1~Gl= [ _?~.8 ~~~”8 nS/m.

The resistances were assumed to vary proportionally to

the square root of frequency, and the conductance propor-

tionally to the first power of frequency. At one line end,

one conductor is driven by a 50-0 voltage generator (see

Fig. 3), of EMF e(t) shown in Fig. 4, while the other

conductor is terminated in a 75-Q load. At the other end,

the line is terminated in two nonlinear resistive circuits,

each of them being a series combination of a 1O-Q resistor

and a nonlinear resistor. The characteristics of the nonlin-

ear resistors were assumed to be given by the equation

‘n=lO(exp(a-l)A(21)

where in is the current through the nonlinear resistor, u. is

the voltage at the nonlinear resistor, and VT= 25 mV. Now

at each time step, we have to solve (18) and (19) simulta-

neously with the equations for the terminal networks

‘“G’~)l=[e(%A’’l-[5)Q 7LJiJ~)l ’22)

[UL(9)] = [~n(4)]-[l\Q ~~Q][iL(9)l (23)

50 n ile
‘lL 20 n

+
*(*) T t“

Vle

L
‘IL
-1.

75 a i2L3 ‘2L 10 n

f T’‘m
L

‘2L

J..

Fig. 3. Schematic representation of the analyzed transmission line with

two signal conductors, driven by a voltage generator and terminated in

nonlinear loads.
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where the vector [ u.( q)] comprises voltages u~l and v~z at

the nonlinear resistors. These voltages are related to the

conductor currents through (21), where in should be re-
placed by – il~(q) and – i2~(q), respectively. The equa-

tions for the load end essentially form a system of simulta-

neous nonlinear equations. These equations were solved
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here by using the Nelder-Mead simplex algorithm for

nonlinear optimization [14].

The voltages at the generator and load ends are given in

Fig. 5. In this computation, the time step was taken to be

20 ps, i.e., the highest frequency involved in the computa-

tion of Green’s functions was 25 GHz. The lengths of the

registers containing Green’s functions were 512 samples,

i.e., 10.24 ns. The CPU time on a VAX 750 computer was

about 4.5 min. As a byproduct, the characteristic imped-

ance matrix of the corresponding lossless line was found to

be

In Fig. 5 one can easily trace the voltage at the driven

conductor and the voltage at the parasitic conductor (due

to the cross-talk) as the waves reach the load end, get

reflected, come back to the generator end, and reach the

load end again. The line transit time is about 3.4 ns.

IV. CONCLUSION

A novel technique was presented for the transient analy-

sis of lossy multiconductor transmission lines with arbi-

trary nonlinear loads. In this approach we compute time-

domain Green’s functions of the transmission line

terminated in quasi-matched loads. These loads change the

properties of the transmission line as seen by the line

terminal networks, but these properties are easily restored

by inserting complementary networks, with negative ele-

ments, into the line terminal networks. The complete re-

sponse of the system is then obtained by using convolution,

yielding the equivalent Th4venin network of the transmiss-

ion line at any time instant. This equivalent network can

easily be incorporated into the time-domain solution of the

terminal networks. The solution of nonlinear networks

(with or without memory) was considered to be a standard

circuit-theory technique, as it was not discussed here.

For the present technique, we need fewer time-domain

data points than in other techniques for the same resolu-

tion. This, in turn, implies that one needs fewer frequency-

domain data points when computing Green’s functions,

and fewer terms in evaluation of the convolution integrals.

This significantly improves the CPU time, as the computa-

tions in frequency domain and the evaluation of the con-

volution are the most time-consuming parts of the analysis.

An example was included to illustrate the application of

the proposed technique.

APPENDIX

Let us introduce the vector [1’] of currents entering the

side “a” of the network [ Z~], the vector [1”] of currents

entering the side “a” of the network [ – Z~], and the

vector [l.] of virtual port currents, entering the side “b” of

the network [ Z~] and at the same time leaving the side

“b” of the network [– Z~]. Let us also introduce the

vector [V’] of voltages at the side “a” of the network [ ZMI,
the vector FV“l of voltages at the side “a” of the network

665

[– Z~], and the vector [~] of virtual port voltages at the

sides “b” of the networks [Z~] and [ – Z~].

The Z-parameter equations for the two networks now

read

[v’] = [za][I’]+[zm][Iu] (Al)

[v”] = [zm][I’]+[zb][Iu] (A2)

[v”] = [-za][I’’]-[- zm][I”] (A3)

[vu] = [-zm][l’’]-[- zb][l”]. (A4)

Taking into account (6), we can subtract (A4) from (A2),

thus obtaining

[zm]([lq+ [I”]) = [0] (A5)

where [0] is a null-vector. From (A5) we have

[1’] = -[l”]. (A6)

If we substitute (A6) into (A3) and compare with (Al), we

finally obtain

[v’] = [v”]. (A7)

Equations (A6) and (A7) essentially state that the corre-

sponding ports at the sides “a” of the networks [ Z~] and

[– Z~] are merely short circuited, because the currents and

the

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

voltages at the ports are identical.
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